Tag Archives: Mountaineering

Seasons of Ice: Part 1 Spring

As Irish skiers go, I’m pretty average, which is to say, I’m a bad skier. I can survival ski down most things, but the grace and elegance that the residents of my current home display on the slopes still eludes me. The benefits of learning to ski before developing risk awareness is all too apparent.

This was on mind when talking over the phone with Ben Pelto (University of Northern British Columbia). Those of you who have read other posts on this blog will know that Ben and I regularly work together during our summer fieldwork campaigns on the glaciers of BC (see On Conrad Glacier: Part 1 and Part 2). It was January, and we were discussing plans for a spring trip to the mountains, specifically Conrad Glacier, to observe how the winter had treated the glacier, and to scout out locations for the coming summer’s deployment of my weather stations. We were also planning to perform scans of the glacier using a ground penetrating radar (GPR), which would provide us with information on how thick the ice is, and the general shape of the underlying bed. This would all require some serious skiing.

Three months later, I am on a familiar road. With skis and camping gear in the back, I’m winding my way along the 750 odd kilometers from Vancouver to Golden, in eastern BC. Tonight, I’m meeting Ben and his sister, Jill, before an early morning helicopter flight to the ice.

 

cg_spring_2016_packed_car_mountain
Stopping off at Roger’s Pass, en route to Golden.

 

cg_spring_2016_Jill_Ben_Helipad
Morning of departure at the Alpine Heli base, with Jill and Ben.

 

cg_spring_2016_Heli_mechanic
Happy for our mechanical problems to happen on the ground.

 

After a brief delay to fix a clogged spark plug, we were in the skies above the Purcell Mountains, in good flying weather. It was my first time taking this journey in what were essentially winter conditions, and I was glued to the window as we maneuvered between the snow-covered peaks. We landed on the west flank of Conrad Glacier at 2,300m. Our campsite overlooked the jagged crevasses of the icefall that lay above our summer field sites. We dug out level platforms in the snow for our tents, and built up walls on the upper side to keep out the cold, downhill ‘katabatic’ winds that can develop on glaciers at night. In the front vestibules, we dug out lower platforms for storing gear, and putting on our boots in the mornings. Finally, we dug out a table and benches, and pitched a tarp over it to serve as our kitchen.

 

cg_spring_2016_tent_morning
Home.

 

cg_spring_2016_mess_tent
Our mess tent. The option to get out of the elements for awhile to cook and eat can make all the difference.

 

One of the main goals for this trip was to get an idea of how much snow the glacier had received over the winter, and how much water this snow will produce if it melts in the  summer. To this end, we needed to take regular measurements across the glacier of the depth of this season’s snow, and its density. After setting camp on the first day, we skied down to the terminus of the glacier, and took a series of these measurements as we moved back up the slope. The weather was mild, and we were surprised to find a well developed melt water stream this early in the season, carving a channel into the surface snow. In the weeks preceding our trip, we had been keeping an eye on data from snow sensors located on mountains in this region. The early onset of spring was resulting in some significant snow melt, and the question on our minds was whether 2016 would prove to be as detrimental to the glaciers in this region as the record losses of 2015.

Late in the afternoon, with the weather beginning to turn, we pushed back to the shelter of our camp. After a warm meal, we watched the skies clear and felt the temperatures drop as the indigo twilight turned into a star filled mountain night.

 

cg_spring_2016_Ben_Jill_icefall_2
Ben and Jill, ascending past an icefall on the glacier.

 

cg_spring_2016_Ben_snow_depth_measure
Ben, probing the snow depth to determine how much the glacier had received over the winter.

 

cg_spring_2016_supraglacial
A well developed melt stream (supraglacial channel) was a surprise find this early in the year.

 

cg_spring_2016_Ben_Jill_return_to_camp
Returning to camp just as the weather began to close in.

 

cg_spring_2016_camp_at_night
Nights fall on our Conrad spring camp.

 

Day two saw the beginning of our radar campaign. Our objective was to ascend to the upper plateau of Conrad, taking measurements along the way. The GPR system consists of a transmitter, and a receiver, each mounted on skis, with antenna extending out in between. The transmitter sends out a pulse of energy that passes down through the ice, and reflects off the bedrock underneath. The reflected energy is detected by the receiver, and the time taken by the pulse to travel to the bed and back tells us how thick the ice is. That’s the theory. The practical involves hauling this system over large swaths of the glacier, up steep slopes and icefalls, and around crevasses, trying to keep the system in line as much as possible. The relatively mild temperatures and strong sunshine made the hauling difficult, with the sleds prone to digging into the soft snow and tipping over. Despite this, we managed to cover significant ground with the radar, completing day trips of over 20km in some cases. Descending with the GPR was always an interesting experience, generally completed at the end of the day when we were returning to camp with already tired legs. We needed to act as brakes to stop the system from torpedoing down the mountain, requiring us to snowplow in our skis for kilometers downhill at a time, quad muscles screaming.

 

cg_spring_2016_gpr_tow_1
Ascending Conrad towards the upper icefall, with the GPR in tow.

 

DSC_6249
Myself and Ben hauling the GPR across the stunning upper plateau of Conrad (Pic: Jill Pelto).

 

cg_spring_2016_Wolverine_tracks
Shared slopes. We came across these wolverine tracks in the snow at 2,900m.

 

cg_spring_2016_mountain_cloud_ski_tracks
Cloud streams across the faces of the surrounding peaks.

 

P1000503
Probing the snow depth as we moved up the glacier (Pic: Ben Pelto).

 

cg_spring_2016_ben_jill_gpr_distant
Completing a GPR survey on the glacier close to camp.

 

Our days on the glacier continued with combined snow depth/density measurements and GPR surveys. Working on the upper plateau of Conrad, the expanse of mountainous terrain around us was astounding. On every degree of the compass, snow covered peaks jostled for space on the horizon, like some jagged, storm blown ocean. A thought that keeps returning to me when working in these places, is what a privilege it is to be afforded such isolation and space in what is an increasingly crowded world. No traffic, sirens, voices, bleeping phones, or engines (apart from the occasional helicopter). To have access to the culture and community that living in a society provides is a great thing, but I am grateful for these opportunities to exist in solitude with nothing but survival and science to drive us on.

On one of our last days on the upper section of the glacier, we continued to record snow depth values to well over 3,000m elevation, and decided to push on  to climb the summit of Mount Conrad; the peak which had loomed over us as we worked. We ascended on skies to within 50m or so of the 3,290 summit, before shedding our gear and scrambling the rock and snow of the final section. We climbed in beautiful weather (as had been the case for most of the trip; very unusual for Conrad), and our view from the summit was unimpeded in all directions. Turning from the summit, my thoughts were now fully occupied by the ski descent necessary to get off the mountain. The conversation I had had with Ben in January regarding my ski experience was echoing in my head as I clipped into my skis, and double checked my bindings. This was steep for me, but hesitating or leaning back would be the wrong option. I watched Ben and Jill drop in, took a solid breath, and followed.

 

cg_spring_2016_Mt_Conrad_summit_Ben_skis
Ben, checking some gear, on the ascent of Mount Conrad.

 

cg_spring_2016_Mt_Conrad_summit_view_bugs
On the summit, looking south into Bugaboo Provincial Park; a climbing mecca I had visited a year previously.

 

cg_spring_2016_conrad_summit_1
My view from the top, prior to our ski descent.

 

noel_conrad_ski_descent
On a very fun section of the descent back to camp. The beautifully symmetrical ski tracks are not mine (Pic: Ben Pelto).

 

cg_spring_2016_Icefall_bw
Below the tumbled walls of one of the icefalls we passed through on the return to camp.

 

cg_spring_2016_peak_long_shadows_1_bw
Light from a low sun highlights the textures of the glacier.

 

cg_spring_2016_tent_morning_noel
Back at camp after another rewarding day.

 

cg_spring_2016_blister
Ski boots that aren’t your own can be unforgiving on long touring days, but it was little to complain about.

 

cg_spring_2016_night_looking_north
Looking north down the valley as the day ends.

 

Our spring visit to Conrad had been very successful, with a wealth of snow and ice thickness data recorded over much of the glacier. Throughout our travels , I had been scouting for potential sites for installing the weather stations in the summer; just two short months away. One would be deployed in a similar location to last year; lower on the glacier in the ablation zone (the area on a glacier where more ice/snow is lost than gained from year to year). The other would be a more ambitious venture. The upper plateau at 3,000m would provide a unique and intriguing location to gain information on the glacier’s weather and melt relationships. It would also present a much harsher environment to operate in. Would we get a decent enough weather window to allow us to install the equipment (several days work), and if so, could the system withstand a season in tough and, as of yet, untested conditions? We would find out soon enough.

 

cg_spring_2016_mountain_moon
The moon sets behind Conrad as another day begins.

 

cg_spring_2016_Ben_distant_2
‘What are men to rocks and mountains’? Ascending a western branch of the glacier.

 

Up Next: Part 2 Summer

On Conrad Glacier: Part 1

High on a mountain glacier, sheltering from a thunderstorm. With hail and wind buffeting the blue plastic tarp I’m clutching on to, and lightning cracking above, I realise that the boxes I’m sitting on contain several large high capacity batteries. My science teachers would be proud.

Four months earlier, I had returned to Vancouver from Svalbard, and an arctic winter that I will never forget. Touching down in YVR airport though, my mind was already on the list of ideas and tasks that would need to be tackled before fieldwork in July. My field campaign on Nordic Glacier last summer (see Notes from Nordic and Return to the Field) had been successful, but this season would present a whole host of new challenges. New glacier, new sensors, new objectives.

The overall goal of my project remains the same; to measure the weather conditions over a glacier surface, and to better understand how these conditions affect melt rates. One of the main differences for this year was that two stations would be installed on the glacier rather than one. The idea behind this is to see how weather and energy patterns vary across different points on the surface of the glacier, and how this in turn affects melting. This would mean a doubling of the number of sensors that would need to be prepared and tested.

conrad_prep15_stations
Test set up of the two stations for the 2015 field campaign, on the grounds of the University of British Columbia (UBC).

 

conrad_prep15_station_equip
Feeling like a roadie: some of the gear that makes up one station.

 

conrad_prep15_station_complete
One of the (mostly) complete stations, in testing at UBC.

 

One of the more challenging aspects of last year’s campaign was ensuring the station remained powered throughout the summer. The nature of mountain weather means that persistent cloud can prevent a solar power system from providing enough energy to the sensors. In addition to doubling the number of stations this year, each station was fitted with a new, power hungry system for measuring turbulent air flow (an important mechanism for transferring heat between the atmosphere and glacier). The upshot is that a total of 12 large boat batteries and 4 solar panels are required this time in the hope of keeping everything beeping and recording over the season.

conrad_prep15_solar
Each station was fitted with two 140W solar panels.

 

conrad_prep15_peli
Modifying the Pelican cases. Each of these cases will house 3 large batteries for powering the stations.

 

conrad_prep15_lab_loaded
Packing up in the lab, on the night before departure.

 

This year’s destination is Conrad Glacier, in  the Purcell Mountains of British Columbia. I had visited Conrad at the end of last season to scout it out as a potential research site. Aside from its scientific merits, it is a beautiful part of the world; flanked by snow covered peaks, with forested valleys below and miles without engines. Named after Conrad Kain, a pioneering Austrian mountaineer who unlocked several first ascents  in this area, the glacier is one of many in this region at risk of total disappearance.  A recent study has forecast a 70% loss of BC’s glaciers this century, with almost total deglaciation in this region. Apart from global consequences to sea level rise, the loss of a glacier is the loss of a large water reservoir, putting pressure on ecosystems and communities (who use the water for drinking, irrigation, and hydro-power) during dry periods like we’ve had here this summer.

Being just a short journey south from last year’s glacier (Nordic), we would again base ourselves in the town of Golden prior to our flight into the mountains. After spending a day on the always spectacular drive from Vancouver to Golden, Valentina and I met up with Ben, a glaciologist from the University of Northern British Columbia (UNBC) who would be joining us. Over some excellent burgers, we also had the chance to catch up with Tannis and Steve, friends of ours who run a ski lodge in the area, and have been consistently helpful. The plan for the next day was to drive to a staging area in the foothills to the south of Golden, and get all our gear into the mountains in as few chopper loads as possible (with thanks as always to Steve for his expertise on this).

conrad_prep15_van
A van-load of science: hitting the road for Golden, BC.

 

conrad_july15_staging_1
At the staging site, waiting for the helicopter to take us to the glacier, with Steve, Ben, and Valentina.

 

conrad_july15_staging_2
Still waiting

 

Conrad_clearing_snowstorm
Summer snow storm, clearing over Conrad Glacier

 

conrad_july15_heli_load_noel
Directing in the first sling load for station 1 (photo credit: Ben Pelto)

 

Three helicopter flights (and some delays) later, all crew and equipment were accounted for on Conrad. Our campsite was just off the ice itself, on a rocky outcrop overlooking the glacier. The first evening was a battle against the weather to get tents set up in between heavy showers and gusty winds. Dinner was a simple affair, with everyone retiring to their sleeping bags early; sleep coming to the sound of fluttering tent fabric.

After breakfast the next morning, we set about finding the best route from camp on to the glacier; navigating the broken and crevassed ice along the glacier margin. Two locations had been selected for station 1 and 2 not far from camp. Each station would take about two days to install, with some additional time to prepare and secure everything for a season in the mountains.

Conrad_aftersnow_tent
Camp, overlooking the glacier on the western nunatak (rock outcrop).

 

Conrad_ice_fins

conrad_july15_noel_setting_anchor
Setting a safety rope for one of the sketchier sections of our route (photo credit: Ben Pelto).

 

conrad_july15_ben_val_approach

 

conrad_july15_ben_val_glacier

 

conrad_july15_ben_val_drill
Ben and Valentina drilling holes

 

conrad_july15_station2_bare
The bones of a station.

 

 

conrad_july15_noel_station_building
Working my way through the sensors and wiring (photo credit: Ben Pelto).

 

The weather had a constant presence throughout the week, with wind, thunder and snow storms slowing the work somewhat, and making cooking a frigid task at the end of the day. Despite what felt like a cold spell to us, it was clear as soon as we saw the glacier that it was experiencing a warm season. In combination with low snowfall during the winter, warm temperatures had resulted in significant melt across the surface by the time we had arrived. Although close to what would normally be the beginning of the melt season, this year’s snow had already completely melted up to the high regions of the glacier.

conrad_july15_ben_water
Ben, getting a drink from one of the many melt water streams on the glacier

 

conrad_july15_radiometer
Wiring the radiometer, which measures the incoming radiation energy from the sun and sky, and the outgoing radiation from the glacier surface.

 

conrad_july15_power
Setting up the power system for one of the stations.

 

conrad_july15_logger
The brains of the operation. Wiring up the datalogger, which is programmed to store all the data from the station, and to tell the sensors when to take measurements.

 

conrad_july15_under_tarp
Sheltering from another hail storm

 

With the stations coming together, Ben and I ventured higher up the glacier, and spent an afternoon installing ablation stakes. These stakes, installed along the length of the glacier, provided a record of how many meters of ice are lost or gained at the surface each year, and give an indication of the health or mass balance of the glacier (see Svalbard Part 2: Balancing Act). During the week on Conrad, Ben was also involved in carrying out a kinematic survey; using detailed GPS measurements to create a map of the glacier.

conrad_july15_ben_crevasse
Ben, navigating a crevasse field.

 

Due to weather delays, the final tasks for installing the stations were completed in the last few hours of the trip. With the helicopter due to pick us up that afternoon, I got moving early on the last day,  and headed on to the ice before dawn to shore up the last few pieces of equipment from the elements, and to make sure all the systems were behaving. In the end, two full weather stations were installed, along with a time lapse camera to monitor conditions over the season.

 

conrad_july15_station1
A completed station (solar panels out of shot). This was the lower of the two stations, at around 2,130 meters elevation.

 

conrad_july15_camera
Time lapse camera, for observing the weather conditions on the glacier, and for keeping track of changes to the surface and the stations themselves.

 

conrad_july15_heli_home
Loading the helicopter for the journey back to civilisation, and a warm shower.

 

It remains to be seen how the the glacier will respond to this year’s melt season, and on a personal level, how all the equipment will perform. A good or bad field campaign will have a major impact on the timeline for my studies and on the goals I hope to achieve.  As our chopper lifted off from our disassembled camp and sped down the valley, I took one last glimpse at the stations and the glacier itself, before my eyes turned to home and my mind to the plan for the next trip.

conrad_july15_ice_sun_flare
The sun dipping below the peaks on the western margin of Conrad Glacier.

 

A Note of Thanks: Just prior to leaving for field work, I received word that I was being awarded the Chih-Chuang and Yien-Ying Wang Hsieh Memorial Scholarship for research in Atmospheric Science. A sincere thank you to the Hsieh family. I was honoured to received it.

 

UP NEXT: The return to Conrad, and what we found.