Tag Archives: Scenic

Seasons of Ice: Part 1 Spring

As Irish skiers go, I’m pretty average, which is to say, I’m a bad skier. I can survival ski down most things, but the grace and elegance that the residents of my current home display on the slopes still eludes me. The benefits of learning to ski before developing risk awareness is all too apparent.

This was on mind when talking over the phone with Ben Pelto (University of Northern British Columbia). Those of you who have read other posts on this blog will know that Ben and I regularly work together during our summer fieldwork campaigns on the glaciers of BC (see On Conrad Glacier: Part 1 and Part 2). It was January, and we were discussing plans for a spring trip to the mountains, specifically Conrad Glacier, to observe how the winter had treated the glacier, and to scout out locations for the coming summer’s deployment of my weather stations. We were also planning to perform scans of the glacier using a ground penetrating radar (GPR), which would provide us with information on how thick the ice is, and the general shape of the underlying bed. This would all require some serious skiing.

Three months later, I am on a familiar road. With skis and camping gear in the back, I’m winding my way along the 750 odd kilometers from Vancouver to Golden, in eastern BC. Tonight, I’m meeting Ben and his sister, Jill, before an early morning helicopter flight to the ice.

 

cg_spring_2016_packed_car_mountain
Stopping off at Roger’s Pass, en route to Golden.

 

cg_spring_2016_Jill_Ben_Helipad
Morning of departure at the Alpine Heli base, with Jill and Ben.

 

cg_spring_2016_Heli_mechanic
Happy for our mechanical problems to happen on the ground.

 

After a brief delay to fix a clogged spark plug, we were in the skies above the Purcell Mountains, in good flying weather. It was my first time taking this journey in what were essentially winter conditions, and I was glued to the window as we maneuvered between the snow-covered peaks. We landed on the west flank of Conrad Glacier at 2,300m. Our campsite overlooked the jagged crevasses of the icefall that lay above our summer field sites. We dug out level platforms in the snow for our tents, and built up walls on the upper side to keep out the cold, downhill ‘katabatic’ winds that can develop on glaciers at night. In the front vestibules, we dug out lower platforms for storing gear, and putting on our boots in the mornings. Finally, we dug out a table and benches, and pitched a tarp over it to serve as our kitchen.

 

cg_spring_2016_tent_morning
Home.

 

cg_spring_2016_mess_tent
Our mess tent. The option to get out of the elements for awhile to cook and eat can make all the difference.

 

One of the main goals for this trip was to get an idea of how much snow the glacier had received over the winter, and how much water this snow will produce if it melts in the  summer. To this end, we needed to take regular measurements across the glacier of the depth of this season’s snow, and its density. After setting camp on the first day, we skied down to the terminus of the glacier, and took a series of these measurements as we moved back up the slope. The weather was mild, and we were surprised to find a well developed melt water stream this early in the season, carving a channel into the surface snow. In the weeks preceding our trip, we had been keeping an eye on data from snow sensors located on mountains in this region. The early onset of spring was resulting in some significant snow melt, and the question on our minds was whether 2016 would prove to be as detrimental to the glaciers in this region as the record losses of 2015.

Late in the afternoon, with the weather beginning to turn, we pushed back to the shelter of our camp. After a warm meal, we watched the skies clear and felt the temperatures drop as the indigo twilight turned into a star filled mountain night.

 

cg_spring_2016_Ben_Jill_icefall_2
Ben and Jill, ascending past an icefall on the glacier.

 

cg_spring_2016_Ben_snow_depth_measure
Ben, probing the snow depth to determine how much the glacier had received over the winter.

 

cg_spring_2016_supraglacial
A well developed melt stream (supraglacial channel) was a surprise find this early in the year.

 

cg_spring_2016_Ben_Jill_return_to_camp
Returning to camp just as the weather began to close in.

 

cg_spring_2016_camp_at_night
Nights fall on our Conrad spring camp.

 

Day two saw the beginning of our radar campaign. Our objective was to ascend to the upper plateau of Conrad, taking measurements along the way. The GPR system consists of a transmitter, and a receiver, each mounted on skis, with antenna extending out in between. The transmitter sends out a pulse of energy that passes down through the ice, and reflects off the bedrock underneath. The reflected energy is detected by the receiver, and the time taken by the pulse to travel to the bed and back tells us how thick the ice is. That’s the theory. The practical involves hauling this system over large swaths of the glacier, up steep slopes and icefalls, and around crevasses, trying to keep the system in line as much as possible. The relatively mild temperatures and strong sunshine made the hauling difficult, with the sleds prone to digging into the soft snow and tipping over. Despite this, we managed to cover significant ground with the radar, completing day trips of over 20km in some cases. Descending with the GPR was always an interesting experience, generally completed at the end of the day when we were returning to camp with already tired legs. We needed to act as brakes to stop the system from torpedoing down the mountain, requiring us to snowplow in our skis for kilometers downhill at a time, quad muscles screaming.

 

cg_spring_2016_gpr_tow_1
Ascending Conrad towards the upper icefall, with the GPR in tow.

 

DSC_6249
Myself and Ben hauling the GPR across the stunning upper plateau of Conrad (Pic: Jill Pelto).

 

cg_spring_2016_Wolverine_tracks
Shared slopes. We came across these wolverine tracks in the snow at 2,900m.

 

cg_spring_2016_mountain_cloud_ski_tracks
Cloud streams across the faces of the surrounding peaks.

 

P1000503
Probing the snow depth as we moved up the glacier (Pic: Ben Pelto).

 

cg_spring_2016_ben_jill_gpr_distant
Completing a GPR survey on the glacier close to camp.

 

Our days on the glacier continued with combined snow depth/density measurements and GPR surveys. Working on the upper plateau of Conrad, the expanse of mountainous terrain around us was astounding. On every degree of the compass, snow covered peaks jostled for space on the horizon, like some jagged, storm blown ocean. A thought that keeps returning to me when working in these places, is what a privilege it is to be afforded such isolation and space in what is an increasingly crowded world. No traffic, sirens, voices, bleeping phones, or engines (apart from the occasional helicopter). To have access to the culture and community that living in a society provides is a great thing, but I am grateful for these opportunities to exist in solitude with nothing but survival and science to drive us on.

On one of our last days on the upper section of the glacier, we continued to record snow depth values to well over 3,000m elevation, and decided to push on  to climb the summit of Mount Conrad; the peak which had loomed over us as we worked. We ascended on skies to within 50m or so of the 3,290 summit, before shedding our gear and scrambling the rock and snow of the final section. We climbed in beautiful weather (as had been the case for most of the trip; very unusual for Conrad), and our view from the summit was unimpeded in all directions. Turning from the summit, my thoughts were now fully occupied by the ski descent necessary to get off the mountain. The conversation I had had with Ben in January regarding my ski experience was echoing in my head as I clipped into my skis, and double checked my bindings. This was steep for me, but hesitating or leaning back would be the wrong option. I watched Ben and Jill drop in, took a solid breath, and followed.

 

cg_spring_2016_Mt_Conrad_summit_Ben_skis
Ben, checking some gear, on the ascent of Mount Conrad.

 

cg_spring_2016_Mt_Conrad_summit_view_bugs
On the summit, looking south into Bugaboo Provincial Park; a climbing mecca I had visited a year previously.

 

cg_spring_2016_conrad_summit_1
My view from the top, prior to our ski descent.

 

noel_conrad_ski_descent
On a very fun section of the descent back to camp. The beautifully symmetrical ski tracks are not mine (Pic: Ben Pelto).

 

cg_spring_2016_Icefall_bw
Below the tumbled walls of one of the icefalls we passed through on the return to camp.

 

cg_spring_2016_peak_long_shadows_1_bw
Light from a low sun highlights the textures of the glacier.

 

cg_spring_2016_tent_morning_noel
Back at camp after another rewarding day.

 

cg_spring_2016_blister
Ski boots that aren’t your own can be unforgiving on long touring days, but it was little to complain about.

 

cg_spring_2016_night_looking_north
Looking north down the valley as the day ends.

 

Our spring visit to Conrad had been very successful, with a wealth of snow and ice thickness data recorded over much of the glacier. Throughout our travels , I had been scouting for potential sites for installing the weather stations in the summer; just two short months away. One would be deployed in a similar location to last year; lower on the glacier in the ablation zone (the area on a glacier where more ice/snow is lost than gained from year to year). The other would be a more ambitious venture. The upper plateau at 3,000m would provide a unique and intriguing location to gain information on the glacier’s weather and melt relationships. It would also present a much harsher environment to operate in. Would we get a decent enough weather window to allow us to install the equipment (several days work), and if so, could the system withstand a season in tough and, as of yet, untested conditions? We would find out soon enough.

 

cg_spring_2016_mountain_moon
The moon sets behind Conrad as another day begins.

 

cg_spring_2016_Ben_distant_2
‘What are men to rocks and mountains’? Ascending a western branch of the glacier.

 

Up Next: Part 2 Summer