Tag Archives: Golden

On Conrad Glacier: Part 1

High on a mountain glacier, sheltering from a thunderstorm. With hail and wind buffeting the blue plastic tarp I’m clutching on to, and lightning cracking above, I realise that the boxes I’m sitting on contain several large high capacity batteries. My science teachers would be proud.

Four months earlier, I had returned to Vancouver from Svalbard, and an arctic winter that I will never forget. Touching down in YVR airport though, my mind was already on the list of ideas and tasks that would need to be tackled before fieldwork in July. My field campaign on Nordic Glacier last summer (see Notes from Nordic and Return to the Field) had been successful, but this season would present a whole host of new challenges. New glacier, new sensors, new objectives.

The overall goal of my project remains the same; to measure the weather conditions over a glacier surface, and to better understand how these conditions affect melt rates. One of the main differences for this year was that two stations would be installed on the glacier rather than one. The idea behind this is to see how weather and energy patterns vary across different points on the surface of the glacier, and how this in turn affects melting. This would mean a doubling of the number of sensors that would need to be prepared and tested.

conrad_prep15_stations
Test set up of the two stations for the 2015 field campaign, on the grounds of the University of British Columbia (UBC).

 

conrad_prep15_station_equip
Feeling like a roadie: some of the gear that makes up one station.

 

conrad_prep15_station_complete
One of the (mostly) complete stations, in testing at UBC.

 

One of the more challenging aspects of last year’s campaign was ensuring the station remained powered throughout the summer. The nature of mountain weather means that persistent cloud can prevent a solar power system from providing enough energy to the sensors. In addition to doubling the number of stations this year, each station was fitted with a new, power hungry system for measuring turbulent air flow (an important mechanism for transferring heat between the atmosphere and glacier). The upshot is that a total of 12 large boat batteries and 4 solar panels are required this time in the hope of keeping everything beeping and recording over the season.

conrad_prep15_solar
Each station was fitted with two 140W solar panels.

 

conrad_prep15_peli
Modifying the Pelican cases. Each of these cases will house 3 large batteries for powering the stations.

 

conrad_prep15_lab_loaded
Packing up in the lab, on the night before departure.

 

This year’s destination is Conrad Glacier, in  the Purcell Mountains of British Columbia. I had visited Conrad at the end of last season to scout it out as a potential research site. Aside from its scientific merits, it is a beautiful part of the world; flanked by snow covered peaks, with forested valleys below and miles without engines. Named after Conrad Kain, a pioneering Austrian mountaineer who unlocked several first ascents  in this area, the glacier is one of many in this region at risk of total disappearance.  A recent study has forecast a 70% loss of BC’s glaciers this century, with almost total deglaciation in this region. Apart from global consequences to sea level rise, the loss of a glacier is the loss of a large water reservoir, putting pressure on ecosystems and communities (who use the water for drinking, irrigation, and hydro-power) during dry periods like we’ve had here this summer.

Being just a short journey south from last year’s glacier (Nordic), we would again base ourselves in the town of Golden prior to our flight into the mountains. After spending a day on the always spectacular drive from Vancouver to Golden, Valentina and I met up with Ben, a glaciologist from the University of Northern British Columbia (UNBC) who would be joining us. Over some excellent burgers, we also had the chance to catch up with Tannis and Steve, friends of ours who run a ski lodge in the area, and have been consistently helpful. The plan for the next day was to drive to a staging area in the foothills to the south of Golden, and get all our gear into the mountains in as few chopper loads as possible (with thanks as always to Steve for his expertise on this).

conrad_prep15_van
A van-load of science: hitting the road for Golden, BC.

 

conrad_july15_staging_1
At the staging site, waiting for the helicopter to take us to the glacier, with Steve, Ben, and Valentina.

 

conrad_july15_staging_2
Still waiting

 

Conrad_clearing_snowstorm
Summer snow storm, clearing over Conrad Glacier

 

conrad_july15_heli_load_noel
Directing in the first sling load for station 1 (photo credit: Ben Pelto)

 

Three helicopter flights (and some delays) later, all crew and equipment were accounted for on Conrad. Our campsite was just off the ice itself, on a rocky outcrop overlooking the glacier. The first evening was a battle against the weather to get tents set up in between heavy showers and gusty winds. Dinner was a simple affair, with everyone retiring to their sleeping bags early; sleep coming to the sound of fluttering tent fabric.

After breakfast the next morning, we set about finding the best route from camp on to the glacier; navigating the broken and crevassed ice along the glacier margin. Two locations had been selected for station 1 and 2 not far from camp. Each station would take about two days to install, with some additional time to prepare and secure everything for a season in the mountains.

Conrad_aftersnow_tent
Camp, overlooking the glacier on the western nunatak (rock outcrop).

 

Conrad_ice_fins

conrad_july15_noel_setting_anchor
Setting a safety rope for one of the sketchier sections of our route (photo credit: Ben Pelto).

 

conrad_july15_ben_val_approach

 

conrad_july15_ben_val_glacier

 

conrad_july15_ben_val_drill
Ben and Valentina drilling holes

 

conrad_july15_station2_bare
The bones of a station.

 

 

conrad_july15_noel_station_building
Working my way through the sensors and wiring (photo credit: Ben Pelto).

 

The weather had a constant presence throughout the week, with wind, thunder and snow storms slowing the work somewhat, and making cooking a frigid task at the end of the day. Despite what felt like a cold spell to us, it was clear as soon as we saw the glacier that it was experiencing a warm season. In combination with low snowfall during the winter, warm temperatures had resulted in significant melt across the surface by the time we had arrived. Although close to what would normally be the beginning of the melt season, this year’s snow had already completely melted up to the high regions of the glacier.

conrad_july15_ben_water
Ben, getting a drink from one of the many melt water streams on the glacier

 

conrad_july15_radiometer
Wiring the radiometer, which measures the incoming radiation energy from the sun and sky, and the outgoing radiation from the glacier surface.

 

conrad_july15_power
Setting up the power system for one of the stations.

 

conrad_july15_logger
The brains of the operation. Wiring up the datalogger, which is programmed to store all the data from the station, and to tell the sensors when to take measurements.

 

conrad_july15_under_tarp
Sheltering from another hail storm

 

With the stations coming together, Ben and I ventured higher up the glacier, and spent an afternoon installing ablation stakes. These stakes, installed along the length of the glacier, provided a record of how many meters of ice are lost or gained at the surface each year, and give an indication of the health or mass balance of the glacier (see Svalbard Part 2: Balancing Act). During the week on Conrad, Ben was also involved in carrying out a kinematic survey; using detailed GPS measurements to create a map of the glacier.

conrad_july15_ben_crevasse
Ben, navigating a crevasse field.

 

Due to weather delays, the final tasks for installing the stations were completed in the last few hours of the trip. With the helicopter due to pick us up that afternoon, I got moving early on the last day,  and headed on to the ice before dawn to shore up the last few pieces of equipment from the elements, and to make sure all the systems were behaving. In the end, two full weather stations were installed, along with a time lapse camera to monitor conditions over the season.

 

conrad_july15_station1
A completed station (solar panels out of shot). This was the lower of the two stations, at around 2,130 meters elevation.

 

conrad_july15_camera
Time lapse camera, for observing the weather conditions on the glacier, and for keeping track of changes to the surface and the stations themselves.

 

conrad_july15_heli_home
Loading the helicopter for the journey back to civilisation, and a warm shower.

 

It remains to be seen how the the glacier will respond to this year’s melt season, and on a personal level, how all the equipment will perform. A good or bad field campaign will have a major impact on the timeline for my studies and on the goals I hope to achieve.  As our chopper lifted off from our disassembled camp and sped down the valley, I took one last glimpse at the stations and the glacier itself, before my eyes turned to home and my mind to the plan for the next trip.

conrad_july15_ice_sun_flare
The sun dipping below the peaks on the western margin of Conrad Glacier.

 

A Note of Thanks: Just prior to leaving for field work, I received word that I was being awarded the Chih-Chuang and Yien-Ying Wang Hsieh Memorial Scholarship for research in Atmospheric Science. A sincere thank you to the Hsieh family. I was honoured to received it.

 

UP NEXT: The return to Conrad, and what we found.

Notes from Nordic

The winter snowpack was still hiding crevasses. Where it had melted, large swaths of cracked and yawning ice had been exposed, hinting at what may lie beneath the snow cover.

One day earlier, July  8th, Valentina Radic and I had left Vancouver, aiming for the town of Golden, near British Columbia’s eastern border. Our route brought us on a nine hour drive, passing from the Coastal Mountains, through the vast Interior Plateau, and into the Selkirk range near the edge of the Rockies.

Golden was to be the staging point for this summer’s field campaign. The plan was to install a weather and glacier monitoring station on Nordic Glacier.  The station was to observe the melt rate of the surface of the glacier, and to record any meteorological varibles that may affect melting (see The Project).

Nordic was selected as its meltwater drains into the Columbia river. This is the largest river in the the Pacific Northwest, and the forth largest in the United States. It stretches for 2,000km, through BC and seven US states, with a drainage basin the size of France.  Its waters are used for irrigation and hydroelectric power production, with 14 dams on the main stem, and more on its tributaries.  I had encountered the Columbia before, but much further downstream in the state of Washington, while rock climbing (see Vantage Point).

On arriving in Golden, we drove straight to the home of our hosts for the night, Tannis and Steve. When initially planning this trip, we had intended to camp once we got into the mountains, but Tannis and Steve kindly offered us the use of their backcounty ski lodge (Sorcerer Lodge) which is located in the same valley as Nordic.  Operating in the area for over twenty years, they have seen firsthand the changes undergone by the glacier. It was inspiring to see the interest and enthusiasm (and knowledge) that they showed for the project, and was a reminder that this research wasn’t just an academic exercise. Joining us in Golden were Brian Menounus and Federico Ponce, two researchers from the University of Northern British Columbia. With our team of four assembled, we stocked up on some soon to be burned calories (with excellent burgers in Golden), and bedded down for an early departure.

Steve_Heli
Line of action. Morning of departure for the mountains, with Steve (pictured) assisting with the logistics of the helicopter transport. (Click on images to expand)

 

Nordic_Article-1
Loading the helicopter.

 

Nordic_Article-2
Ascending the valley towards the mountains.

Our flight to the glacier the following morning went smoothly, with Steve lending us his experience with helicopter transports. Valentina and I went in on the first run to scan for a suitable site for the station, and to get dropped off on the glacier with the main equipment for the station. Brian and Federico were to travel in on the second run to bring equipment to the lodge.

After several months of looking at Nordic in photographs and maps, seeing it grow larger through the window of the helicopter, I felt excited and nervous. As we drew closer however, I was concerned to see the extent of the snow cover in the area we had been planning to deploy. Working on a ‘dry’ section of a glacier (where there is no snow) has the major advantage  of being able to see the location of the crevasses. Not only is this much safer, it allows you to move and work more efficiently, as precautions such as being roped together are not necessary. We had hoped that the winter snow pack would have melted from our site by the time we arrived, but it appeared that, for this season, we were a little early.

Nordic_Article-3
Initial fly over of the glacier to select a suitable site. It became apparent at this point that there was still significant snow cover.

We landed on the glacier, and unloaded our equipment with the engines still running. As soon as we were clear of the downwash from the departing helicopter, we roped up and started surveying the area for the flattest spot for our station, probing the snow as we moved to check for crevasses. After the helicopter returned to deposit the larger pieces of equipment, we flew down as far as the lodge to  meet with Brian and Federico. With conditions the way they were, we decided we would hike up to the glacier together, and find the safest route to the site.

Nordic_Article-8
Traversing the moraine at the beginning of the hike to the glacier. Smoke from forest fires further down the valley can be seen hanging in the background.

 

Nordic_Article-9
Nordic Glacier. After descending the moraine, our route crossed the river, and followed the base of the mountain on the left side of the image as far as the patch of rust coloured rock to the left of the upper lake. This marks the beginning of the ‘Wedding Band’, which we ascended up to the left to gain access on to the glacier.

Each day, our hike to the glacier would begin with crossing the lateral moraine that separated the lodge from the main valley. From there, we would descend and traverse the valley to the other side, crossing the river to do so. The river crossing was a glacier monitoring exercise in itself. As the river’s source is the melt water draining from the glacier, there was a distinct daily pattern in the strength and level of the flow. In the morning, when there had been little melting during the colder night temperatures, the water level would be well below my knee. Returning in the evening, after a day of warm temperatures and sunshine, the flow would be much stronger, pulling at already tired legs. As you’d imagine, the water was pretty cold, and it was incredible to feel how quickly your heat could be drained away.

Nordic_Article-10
Approaching the crossing. The river is fed directly by melt water from the glacier, meaning its temperature is very cold, and its flow varies greatly with the time of day.

 

Nordic_Article-11

 

Nordic_Article-12_c
Rock Ptarmigan. I came across quite a few of these, usually only noticing them when I was within a couple of meters, and they would burst from behind a rock , freaking me and themselves out.

 

Nordic_Article-13
The Wedding Band.

 

Nordic_Article-14

Nordic_Article-16_BW
Ascending alongside the glacier, significant crevasses were visible in the ice where the snow cover had melted.

 

Nordic_Article-4_BW
Setting out on the glacier towards the site where we had deposited our equipment by helicopter.

 

DSC_0080
Probing for crevasses on the snow covered sections of the glacier (Photo by Valentina Radic).

 

Installing the station came together relatively quickly. Although the glacier is a very different working environment to the lab or test field, I really felt the benefit of all the trial runs and lab assemblies. The station was constructed, wired, and operating after one, albeit long day, and it was fantastic to have the additional manpower of Brian and Federico, who obliged me with some serious ice drilling. A second day was spent testing to see how the data and power system was performing, and also securing the various components of the station in preparation for two months on the side of a mountain.

Nordic_Article-6
A combination of steam drilling (above) and augering (below) was used to bore holes into the ice for mounting some of the sensors.

Nordic_Article-7

IMG_8438
Mounting and wiring the sensors on the main ‘quadpod’ (Photo by Federico Ponce).

 

Nordic_station
The completed station, looking northwest. The solar panel can be seen in the left background, which recharges the batteries housed in the yellow case.  The rain gauge and the snow/ice level monitor mast is behind the main station. The blue tarp contains the tools and equipment used for the installation, and will be left secured on the glacier until the station is dismantled.

 

Nordic_camera
A camera for monitoring the glacier and the station over the season (see A Camera For all Seasons) was installed to the south, with its view similar to the previous image.

 

Nordic_Article-18
The weather during our field work was relatively warm and sunny, and we would notice a significant difference in the surface of the glacier between ascending in the morning and descending in the evening. Crevasses and meltwater streams were appearing as the summer melt season kicked in.

Nordic_Article-19

 

Mohammed Ali once said, ‘it isn’t the mountains ahead to climb that wear you out; it’s the pebble in your shoe.’ In this case, it was the mosquito inside your mosquito net. We carried out our field work during the buggiest few days of a particularly buggy season, and these mosquitoes couldn’t believe their luck when they saw us coming. I’ve spent time in the Amazon jungle, and this was comparable. Once on the ice however, the buzzing clouds would disappear, and we could work in peace.

IMG_8442
My buzzing hat. The locals were out in force to welcome us (Photo by Federico Ponce).

 

Each evening, with duties on the glacier finished, we would begin our return hike back to the lodge. Despite being tired, this was always my favourite part of the day.  No longer focusing on tasks that needed to be done, I could better appreciate the surroundings, particularly in the hour around sunset when everything would be painted gold and blue. To work in such an environment is a privilege, and time needed to be taken to set aside concerns and stresses, and simply take note of where we were.

Nordic_sunset_3
Sunset on Nordic mountain.

 

Nordic_Article-23
Emerging stars.

 

On the morning of departure, we flew over the glacier to get our last view of the station for the next two months. I will return at the beginning of September to see how well it survived, to dismantle and transport it back to Vancouver, and to start working on what its data can tell us.

Nordic_Article-24
The station through a telephoto lens, as seen from the lodge on the morning of departure.
Nordic_Article-25
Flying over the moraine.
Nordic_Article-26
Station from above as we flew out.

 

Nordic_Article-28_c
Passing through the Selkirk range (images above and below) on the flight back to golden.

Nordic_Article-29

Nordic_Article-30
Returning to base.

 

We tackled the drive back to Vancouver on the day we flew down, utilising several food/coffee/ice cream stops to keep sleep and the 35°C of the Interior Plateau at bay. Arriving back to the city, I was tired but content that the work had gone well, and looking forward to taking it easy for a few days before preparing for my next trip (Alaska). Calling into the lab to drop off a couple of items before going home, I was greeted by a delivery of 4 large boxes; the starting components for next year’s stations. It was time to get some sleep.

 

DSC_0667
The beginnings of next year’s field campaign.

 

 

Up Next: I’ve just returned from a glaciology summer school in Alaska; photo-journal coming in the next couple of days.